Heparinases I References

References for Heparinase I:

  1. Aich, U., Shriver, Z., Tharakaraman, K., Raman, R. and Sasisekharan, R. (2011). Competitive Inhibition of Heparinase I by Persulfonated Glycosaminoglycans: A tool to detect Heparin contamination. Chem. 83(20): 7815-7822. DOI: http://doi.org/doi:10.1021/ac201498a.
  2. Alcantara, F.F., Iglehart, D.J. and Ochs, R.J. (1999). Heparin in plasma samples causes nonspecific binding to histones on Western blots. Immunol. Meth. 11-18. DOI: http://doi.org/10.1016/s0022-1759(99)00043-5.
  3. Anger, P., Martinez, C., Mourier, P. and Viskov, C. (2018). Oligosaccharide Chromatographic Techniques for Quantification of Structural Process-Related Impurities in Heparin Resulting From 2-O Desulfation. In. Med. 5(346): 1-11. http://doi.org/10.3389/fmed.2018.00346.
  4. Backen, A.C., Cole, C.L., Lau, S.C., Clamp, A.R., McVey, R., Gallagher, J.T. and Jayson, G.C. (2007). Heparan sulphate synthetic and editing enzymes in ovarian cancer. J. Cancer. 96. 1544-1548. DOI: https://doi.org/10.1038/sj.bjc.6603747.
  5. Bai, X-H., Fischer, S., Keshavjee, S. and Liu, M. (2000). Heparin interference with reverse transcriptase polymerase chain reaction of RNA extracted from lungs after ischemia‐reperfusion. Transpl. Int. 13. 146-150. DOI: http://doi.org/1007/s001470050306.
  6. Bame, J.K., Venkatesan, I., Stelling, H.D. and Tumova, S. (2000). The spacing of S-domains on HS glycosaminoglycans determines whether the chain is a substrate for intracellular heparanases.  10(7) Pages 715–726, DOI: https://doi.org/10.1093/glycob/10.7.715.
  7. Bhushan, I., Alabbas, A., Kuberan, B., Gupta, R.B. and Desai, U.R. (2017). Immobilization alters heparin cleaving properties of Heparinase I. Glycbiol. 27(11), 994-998. doi: http://doi.org/10.1093/glycob/cwx074.
  8. Bourgeois, C., Bour, J.B., Lidholt, K., Gauthray, C. and Pothier, P. (1998). Heparin-Like Structures on Respiratory Syncytial Virus Are Involved in Its Infectivity In Vitro. J. Virol. 7221-7227. DOI:http://doi.org/10.1128/JVI.72.9.7221-7227.1998.
  9. Byrnes, A.P. and Griffin, D.E. (1998). Binding of Sindbis Virus to Cell Surface Heparan Sulfate. Virol. 72(9). 7349-7356. DOI: http://doi.org/10.1128/JVI.72.9.7349-7356.1998.
  10. Clausen, T.M., Sandoval, D.R., Spliid, C.B., Pihl, J., Perrett, H.R., Painter, C., Narayanan, A., Majowicz, S.A., Kwong, E.M., McVicar, R.N., Thacker, B.E., Glass,C.A.,  Yang, Z., Torres, J.L.,  Golden, G.J., Bartels, P.L., Porell, R.N., Garretson, A.F., Laubach, L., Feldman, J., Yin, X., Pu, Y., Hauser, B. M., Caradonna, T.M., Kellman, B.P., Martino, C., Gordts, P.L.S.M., Chanda, S.K., Schmidt, A.G., Godula, K., Leibel, S.L., Jose, J., Corbett, K.D., Ward, A.B., Carlin, A.F. and Esko, J.D. (2020). SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell. 183, 1–15. DOI: https://doi.org/10.1016/j.cell.2020.09.033.
  11. Daud, A.N., Ahsan, A., Iqbal, O., Walenga, J.M., Silver, P., Ahmad, S. and Fareed, J. (2001). Synthetic Heparin Pentasaccharide Depolymerization by Heparinase I: Molecular and Biological Implications. Appl. Thomb. Hemost. 7(1): 58-64. DOI: http://doi.org/10.1177/107602960100700112.
  12. Engler, A., Dreja, F., Koberle, S., Theilmann, M., Peters, J. and Frey, U.H. (2018). Establishment of an easy and straight forward heparinase protocol to analyse circulating and myocardial tissue micro-RNA during coronary artery-bypass-graft surgery. Sci. Rep. 8. 1361. 1-9. DOI:  https://doi.org/10.1038/s41598-018-19748-6.
  13. Ernst, S., Venkataraman, G., Winkler., S. Godavarti, R., Langer, R., Cooney, C.L., and Sasisekharan, R. (1996). Expression in Escherichia coli, Purification and Characterization of Heparinase I from Flavobacterium Heparinum. J. 315, 589-597. DOI: http://doi.org/10.1042/bj3150589.
  14. Ernst, S., Langer, R., Cooney, C.L., and Sasisekharan, R. (1995). Enzymatic degradation of glycosaminoglycans. Crit Rev Biochem Mol Biol. 30(5), 387-444. DOI: https://doi-org.proxy.library.upei.ca/10.3109/10409239509083490.
  15. Gilman, E.A., Koch, C.D., Santrach, P.J., Schears, G. J. and Karon, B.S. (2013). Fresh and Citrated Whole-Blood Specimens Can Produce Different Thromboelastography Results in Patients on Extracorporeal Membrane Oxygenation. J. Clin. Pathol. 140. 165-169 DOI: http://doi.org/10.1309/AJCPYIQ9JNNSEN4Q.
  16. Godavarti, R. and Sasisekharan, R. (1996). A Comparative Analysis of the Primary Sequences and Characteristics of Heparinases I, II, and III from Flavobacterium heparinum. Biochem. Biophy. Res. Comm. 229(3). 770-777. DOI: https://doi.org/10.1006/bbrc.1996.1879.
  17. IBEX Hep I data sheet. Revised May 2016, R. 04.
  18. IBEX Hep I Lyophile data sheet.
  19. Imai, H., Yamada, O., Morita, S., Suehiro, S. and Kurimura, T. (1992). Detection of HIV-1 RNA In Heparinized Plasma of HIV-1 Seropositive Individuals. Virol. Meth. 36. 181-184. DOI: https://doi.org/10.1016/0166-0934(92)90149-8.
  20. Jr., M.A., Pothula, S., Kubal, K., Canchala, V.T. and Navarro, I. (2012). Rapid Point-of-Care Assay of Enoxaparin Anticoagulant Efficacy in Whole Blood. J. Visual. Expt. 68, e3852,1-5. DOI: http://doi.org/10.3791/3852.
  21. Jr., M.A., Pothula, S., Kubal, K., Sanchala, V.T. and Navarro, I. (2011). Towards Development of a Point-of-Care Assay of Enoxaparin Anticoagulant Activity in Whole Blood. J. Thromb. Thrombolysis. 32: 47-53. DOI: http://doi.org/10.1007/s11239-010-0546-5.
  22. Izraeli, S., Pfleiderer, C., and Lion, T. (1991). Detection of gene expression by PCR amplification of RNA derived from frozen heparinized whole blood. Nucleic Acids. Res. 19(21) 6061. DOI: http://doi.org/1093/nar/19.21.6051.
  23. Ji, Y., Wang, Y., Zeng, W., Mei, X., Du, S., Yan, Y., Hao, J. Zhang, Z., Lu, Y., Zhang, C., Ge, J. and Xing, X-H. (2020). A Heparin Derivatives Library Constructed by Chemical Modification and Enzymatic Depolymerization for Exploitation of Non-Anticoagulant Functions. Carb. Polym. 249. 116824. 1-12. DOI: https://doi.org/10.1016/j.carbpol.2020.116824.
  24. Johnson, M.L., Navanukraw, C., Grazul-Bilska, A.T., Reynolds, L.P. and Redmer, D.A. (2003). Heparinase treatment of RNA before quantitative real-time RT-PCR. BioTech. 35(6). 1140-1144. DOI: https://doi.org/10.2144/03356bm03.
  25. Kalia, , Chandra, V., Rahman, S.A., Sehgal, D. and Jameel, S. (2009). Heparan Sulfate Proteoglycans are Required for Cellular Binding of the Hepatitis E Virus ORF2 Capsid Protein and for Viral Infection. J. Virol. 83(24). 12714-12724. DOI: http://doi.org/10.1128/JVI.00717-09.
  26. Kondratov, K., Kurapeev, D., Popov, M., Sidorova, M., Minasian, S., Galagudza, M., Kostareva, A. and Fedorov, A. (2016). Heparinase treatment of heparin-contaminated plasma from coronary artery bypass grafting patients enables reliable quantification of microRNAs. Det. Quant. 8. 9-14. DOI: http://dx.doi.org/10.1016/j.bdq.2016.03.001.
  27. Mourier, P., Anger, P., Martinez, C., Herman, F. and Viskov, C. (2015). Quantitative Compositional Analysis of Heparin using Exhaustive Heparinase Digestion and Strong Anion Exchange Chromatography. Chem. Res. 46-53. DOI: http://dx.doi.org/10.1016/j.ancr.2014.12.001.
  28. Robinson, C.J., Mulloy, B., Gallagher, J.T. and Stringer, S.E. (2006). VEGF165-binding Sites within Heparan Sulfate Encompass Two Highly Sulfated Domains and Can Be Liberated by K5 Lyase. Biol. Chem. 281(3): 1731-1740, DOI: http://doi.org/10.1074/jbc.M510760200.
  29. Rozenberg, G.I., Espada, J., de Cidre, L.L., Eijan, A.M., Calvo, J.C. and Bertolesi, G.E. (2001). Heparan sulfate, heparin, and heparinase activity detection on polyacrylamide gel electrophoresis using the fluorochrome tris(2,2′‐bipyridine) ruthenium (II). Electrophoresis. 22-3-11. DOI: http://doi.org/10.1002/1522-2683(200101)22:1<3::AID-ELPS3>3.0.CO;2-G
  30. Sasisekharan, R., Moses, M.A., Nugent, M.A., Cooney, C.L. and Langer, R. (1994). Heparinase inhibits neovascularization. Proc. Natl. Acad. Sci. USA. Biol. 91. 1524-1528. DOI: https://doi.org/10.1073/pnas.91.4.1524.
  31. Sasisekharan, R., Venkataraman, G., Godavarti, R., Ernst, S. Cooney, C.L., and Langer, R. (1996). Heparinase I from Flavobacterium heparinum. Mapping and Characterization of the Heparin Binding Domain. Biol. Chem. 271, 6(9), 3124-3131. DOI::https://doi.org/10.1074/jbc.271.6.3124.
  32. Skutelsky, E., Shoichetman, T. and Hammel, I. (1995). An histochemical approach to characterization of anionic constituents in mast cell secretory granules. Histochem Cell Biol. 104. 453-458. DOI: https://doi.org/10.1007/BF01464335.
  33. Taylor, A.C. (1997). Titration of heparinase for removal of the PCR-inhibitory effect of heparin in DNA samples. Mol. Ecol. 6: 383-385. DOI: https://doi.org/10.1046/j.1365-294X.1997.00191.x.
  34. Wu, J., Zhang, C., Mei, X., Li, Y. and Xing, X-H. (2014). Controllable production of low molecular weight heparins by combinations of heparinase I/II/III. Carb. Polym. 101. 484-492. DOI: http://dx.doi.org/10.1016/j.carbpol.2013.09.052.
  35. Yamada, S., Murakami, T., Tsuda, H., Yoshida, K. and Sugahara, K. (1995). Isolation of The Porcine Heparin Tetrasaccharides with Glucuronate 2-O-Sulfate. Heparinase Cleaves Glucuronate 2-O-Sulfate-Containing Disaccharides in Highly Sulfated Blocks in Heparin. Bol. Chem. 270(15). 8696-8705. DOI: https://doi.org/10.1016/S0021-9258(17)49632-3.
  36. Yu, G., LeBrun, L., Gunay, N.S., Hoppensteadt, D., Walenga, J.M., Fareed, J., and Linhardt, R.J. (2000). Heparinase I Acts on a Synthetic Heparin Pentasaccharide Corresponding to the Antithrombin III Binding Site. Res. 100: 549-556. DOI: http://doi.org/10.1016/s0049-3848(00)00368-6.
  37. Zhu, W., Wang, L., Yang., Y, Jia, J., Fu, S., Feng, Y., He, Y., Li, J-P. and Liang, G. (2010). Interaction of E2 Glycoprotein with Heparan Sulfate is Crucial for Cellular Infection of Sindbis Virus. Plos One. 5(3), e9656. 1-8. DOI:http://doi.org/1371/journal.pone.0009656.

To request a quote, click the button below: