Heparinase II References

References for Heparinase II:

  1. Aich, U., Shriver, Z., Tharakaraman, K., Raman, R. and Sasisekharan, R. (2011). Competitive Inhibition of Heparinase I by Persulfonated Glycosaminoglycans: A tool to detect Heparin contamination. Chem. 83(20): 7815-7822. DOI: http://doi.org/10.1021/ac201498a.
  2. Anger, P., Martinez, C., Mourier, P. and Viskov, C. (2018). Oligosaccharide Chromatographic Techniques for Quantification of Structural Process-Related Impurities in Heparin Resulting From 2-O Desulfation. In. Med. 5(346): 1-11. DOI: http://doi.org/10.3389/fmed.2018.00346.
  3. Backen, A.C., Cole, C.L., Lau, S.C., Clamp, A.R., McVey, R., Gallagher, J.T. and Jayson, G.C. (2007). Heparan sulphate synthetic and editing enzymes in ovarian cancer. J. Cancer. 96. 1544-1548. DOI: https://doi.org/10.1038/sj.bjc.6603747.
  4. Bourgeois, C., Bour, J.B., Lidholt, K., Gauthray, C. and Pothier, P. (1998). Heparin-Like Structures on Respiratory Syncytial Virus Are Involved in Its Infectivity In Vitro. Virol. 7221-7227. DOI:http://doi.org/10.1128/JVI.72.9.7221-7227.1998.
  5. Clausen, T.M., Sandoval, D.R., Spliid, C.B., Pihl, J., Perrett, H.R., Painter, C., Narayanan, A., Majowicz, S.A., Kwong, E.M., McVicar, R.N., Thacker, B.E., Glass,C.A.,  Yang, Z., Torres, J.L.,  Golden, G.J., Bartels, P.L., Porell, R.N., Garretson, A.F., Laubach, L., Feldman, J., Yin, X., Pu, Y., Hauser, B. M., Caradonna, T.M., Kellman, B.P., Martino, C., Gordts, P.L.S.M., Chanda, S.K., Schmidt, A.G., Godula, K., Leibel, S.L., Jose, J., Corbett, K.D., Ward, A.B., Carlin, A.F. and Esko, J.D. (2020). SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell. 183, 1–15.  DOI: https://doi.org/10.1016/j.cell.2020.09.033.
  6. Ernst, S., Langer, R., Cooney, C.L., and Sasisekharan, R. (1995). Enzymatic degradation of glycosaminoglycans. Rev. Biochem. Mol. Biol. 30(5), 387-444. DOI: https://doi-org.proxy.library.upei.ca/10.3109/10409239509083490.
  7. Huang, K. and Park, S. (2021). Heparan Sulfated Glypican-4 is Released from Astrocytes Predominantly by Proteolytic Shedding. BioRxiv. 1-29. DOI:https://doi.org/10.1101/2021.02.17.431702.
  8. IBEX Hep II data sheet. Revised May 2019, R. 06.
  9. IBEX Hep II Lyophile data sheet. May 2019 R. 01.
  10. Ji, Y., Wang, Y., Zeng, W., Mei, X., Du, S., Yan, Y., Hao, J. Zhang, Z., Lu, Y., Zhang, C., Ge, J. and Xing, X-H. (2020). A Heparin Derivatives Library Constructed by Chemical Modification and Enzymatic Depolymerization for Exploitation of Non-Anticoagulant Functions. Carb. Polym. 249. 116824. 1-12. DOI: https://doi.org/10.1016/j.carbpol.2020.116824.
  11. Moffat, C. F., M. W. McLean, W. F. Long, and F. B. Williamson. Heparinase II from Flavobacterium heparinum. HPLC analysis of the saccharides generated from chemically modified heparins. Eur. J. Biochem. 202:531–541. DOI: http://doi.org/10.1111/j.1432-1033.1991.tb16405.x.
  12. Mourier, P., Anger, P., Martinez, C., Herman, F. and Viskov, C. (2015). Quantitative Compositional Analysis of Heparin using Exhaustive Heparinase Digestion and Strong Anion Exchange Chromatography. Chem. Res. 46-53. http://dx.doi.org/10.1016/j.ancr.2014.12.001.
  13. Rhomberg, J., Shriver, Z., Beimann, K. and Sasisekharan, R. (1998). Mass Spectrometric Evidence for the Enzymatic Mechanism of the Depolymerization of Heparin-like Glycosaminoglycans by Heparinase II. Natl. Acad. Sci., USA. Biochem. 95. 12232-12237. DOI: https://doi.org/10.1073/pnas.95.21.12232.
  14. Rozenberg, G.I., Espada, J., de Cidre, L.L., Eijan, A.M., Calvo, J.C. and Bertolesi, G.E. (2001). Heparan sulfate, heparin, and heparinase activity detection on polyacrylamide gel electrophoresis using the fluorochrome tris(2,2′‐bipyridine) ruthenium (II). Electrophoresis. 22-3-11. DOI: http://doi.org/10.1002/1522-2683(200101)22:1<3::AID-ELPS3>3.0.CO;2-G.
  15. Shaya, D., Tocilj, A., Li, Y., Myette, J., Venkataraman, G., Sasisekharan, R. and Cygler, M. (2006). Crystal Structure of Heparinase II from Pedobacter heparinus and its Complex with a Disaccharide Product. Biol. Chem. 281(22).15525-15535. DOI: http://doi.org/10.1074/jbc.M512055200.
  16. Taylor, A.C. (1997). Titration of heparinase for removal of the PCR-inhibitory effect of heparin in DNA samples. Mol. Ecol. 6: 383-385. DOI: https://doi.org/10.1046/j.1365-294X.1997.00191.x.
  17. Wang, Z., Yang, B., Zhang, Z., Ly, M., Takieddin, M., Mousa, S., Liu, J., Dordick, J.S. and Linhardt, R.J. (2012). Control of the heparosan N-deacetylation leads to an improved bioengineered heparin. Appl. Microbiol. Biotechnol. 91(1): 91-99. DOI: http://doi.org/10.1007/s00253-011-3231-5.
  18. Wei, Z., Lyon, M. and Gallagher, J.T. (2005). Distinct Substrate Specificities of Bacterial Heparinases against N-Unsubstituted Glucosamine Residues in Heparan Sulfate. Biol. Chem. 280 (16). 15742-15748. DOI: http://doi.org/10.1074/jbc.M501102200.
  19. Wu, J., Zhang, C., Mei, X., Li, Y. and Xing, X-H. (2014). Controllable production of low molecular weight heparins by combinations of heparinase I/II/III. Carb. Polym. 101. 484-492. DOI: http://dx.doi.org/10.1016/j.carbpol.2013.09.052.
  20. Yamada, S., Murakami, T., Tsuda, H., Yoshida, K. and Sugahara, K. (1995). Isolation of The Porcine Heparin Tetrasaccharides with Glucuronate 2-O-Sulfate. Heparinase Cleaves Glucuronate 2-O-Sulfate-Containing Disaccharides in Highly Sulfated Blocks in Heparin. Bol. Chem. 270(15). 8696-8705. DOI: https://doi.org/10.1016/S0021-9258(17)49632-3.

To request a quote, click the button below: