Heparinase III References
References for Heparinase III:
- Aich, U., Shriver, Z., Tharakaraman, K., Raman, R. and Sasisekharan, R. (2011). Competitive Inhibition of Heparinase I by Persulfonated Glycosaminoglycans: A tool to detect Heparin contamination. Chem. 83(20): 7815-7822. DOI: http://doi.org/10.1021/ac201498a.
- Anger, P., Martinez, C., Mourier, P. and Viskov, C. (2018). Oligosaccharide Chromatographic Techniques for Quantification of Structural Process-Related Impurities in Heparin Resulting From 2-O Desulfation. In. Med. 5(346): 1-11. DOI: http://doi.org/10.3389/fmed.2018.00346.
- Bourgeois, C., Bour, J.B., Lidholt, K., Gauthray, C. and Pothier, P. (1998). Heparin-Like Structures on Respiratory Syncytial Virus Are Involved in Its Infectivity In Vitro. Virol. 7221-7227. DOI:http://doi.org/10.1128/JVI.72.9.7221-7227.1998.
- Clausen, T.M., Sandoval, D.R., Spliid, C.B., Pihl, J., Perrett, H.R., Painter, C., Narayanan, A., Majowicz, S.A., Kwong, E.M., McVicar, R.N., Thacker, B.E., Glass,C.A., Yang, Z., Torres, J.L., Golden, G.J., Bartels, P.L., Porell, R.N., Garretson, A.F., Laubach, L., Feldman, J., Yin, X., Pu, Y., Hauser, B. M., Caradonna, T.M., Kellman, B.P., Martino, C., Gordts, P.L.S.M., Chanda, S.K., Schmidt, A.G., Godula, K., Leibel, S.L., Jose, J., Corbett, K.D., Ward, A.B., Carlin, A.F. and Esko, J.D. (2020). SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell. 183, 1–15. DOI: https://doi.org/10.1016/j.cell.2020.09.033.
- Ernst, S., Langer, R., Cooney, C.L., and Sasisekharan, R. (1995). Enzymatic degradation of glycosaminoglycans. Rev. Biochem. Mol. Biol. 30(5), 387-444. DOI: https://doi-org.proxy.library.upei.ca/10.3109/10409239509083490.
- Gao, L., and Lipowsky, H.H. (2010). Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes. Microvasc. Res. 80(3): 394-401. DOI: http://doi.org/1016/j.mvr.2010.06.005.
- Godavarti, R. and Sasisekharan, R. (1996). A Comparative Analysis of the Primary Sequences and Characteristics of Heparinases I, II, and III from Flavobacterium heparinum. Biochem. Biophy. Res. Comm. 229(3). 770-777. DOI: https://doi.org/10.1006/bbrc.1996.1879.
- Huang, K. and Park, S. (2021). Heparan Sulfated Glypican-4 is Released from Astrocytes Predominantly by Proteolytic Shedding. BioRxiv. 1-29. DOI:https://doi.org/10.1101/2021.02.17.431702.
- IBEX Hep III data sheet. Revised May 2016, R. 04.
- IBEX Hep III Lyophile data sheet. Aug 08, 2018.
- Ji, Y., Wang, Y., Zeng, W., Mei, X., Du, S., Yan, Y., Hao, J. Zhang, Z., Lu, Y., Zhang, C., Ge, J. and Xing, X-H. (2020). A Heparin Derivatives Library Constructed by Chemical Modification and Enzymatic Depolymerization for Exploitation of Non-Anticoagulant Functions. Carb. Polym. 249. 116824. 1-12. DOI: https://doi.org/10.1016/j.carbpol.2020.116824.
- Kalia, , Chandra, V., Rahman, S.A., Sehgal, D. and Jameel, S. (2009). Heparan Sulfate Proteoglycans are Required for Cellular Binding of the Hepatitis E Virus ORF2 Capsid Protein and for Viral Infection. J. Virol. 83(24). 12714-12724. DOI: http://doi.org/10.1128/JVI.00717-09.
- Mourier, P., Anger, P., Martinez, C., Herman, F. and Viskov, C. (2015). Quantitative Compositional Analysis of Heparin using Exhaustive Heparinase Digestion and Strong Anion Exchange Chromatography. Chem. Res. 46-53. DOI: http://dx.doi.org/10.1016/j.ancr.2014.12.001
- Robinson, C.J., Mulloy, B., Gallagher, J.T. and Stringer, S.E. (2006). VEGF165-binding Sites within Heparan Sulfate Encompass Two Highly Sulfated Domains and Can Be Liberated by K5 Lyase. Biol. Chem. 281(3): 1731-1740, DOI: http://doi.org/10.1074/jbc.M510760200.
- Rozenberg, G.I., Espada, J., de Cidre, L.L., Eijan, A.M., Calvo, J.C. and Bertolesi, G.E. (2001). Heparan sulfate, heparin, and heparinase activity detection on polyacrylamide gel electrophoresis using the fluorochrome tris(2,2′‐bipyridine) ruthenium (II). Electrophoresis. 22-3-11. DOI: http://doi.org/10.1002/1522-2683(200101)22:1<3::AID-ELPS3>3.0.CO;2-G
- Sasisekharan, R., Moses, M.A., Nugent, M.A., Cooney, C.L. and Langer, R. (1994). Heparinase inhibits neovascularization. Proc. Natl. Acad. Sci. USA. Biol. 91. 1524-1528. DOI: https://doi.org/10.1073/pnas.91.4.1524.
- Skutelsky, E., Shoichetman, T. and Hammel, I. (1995). An histochemical approach to characterization of anionic constituents in mast cell secretory granules. Histochem Cell Biol. 104. 453-458. DOI: https://doi.org/10.1007/BF01464335
- Wei, Z., Lyon, M. and Gallagher, J.T. (2005). Distinct Substrate Specificities of Bacterial Heparinases against N-Unsubstituted Glucosamine Residues in Heparan Sulfate. Biol. Chem. 280 (16). 15742-15748. DOI: http://doi.org/10.1074/jbc.M501102200.
- Wu, J., Zhang, C., Mei, X., Li, Y. and Xing, X-H. (2014). Controllable production of low molecular weight heparins by combinations of heparinase I/II/III. Carb. Polym. 101. 484-492. DOI: http://dx.doi.org/10.1016/j.carbpol.2013.09.052.