Heparinase II References
References for Heparinase II:
- Aich, U., Shriver, Z., Tharakaraman, K., Raman, R. and Sasisekharan, R. (2011). Competitive Inhibition of Heparinase I by Persulfonated Glycosaminoglycans: A tool to detect Heparin contamination. Chem. 83(20): 7815-7822. DOI: http://doi.org/10.1021/ac201498a.
- Anger, P., Martinez, C., Mourier, P. and Viskov, C. (2018). Oligosaccharide Chromatographic Techniques for Quantification of Structural Process-Related Impurities in Heparin Resulting From 2-O Desulfation. In. Med. 5(346): 1-11. DOI: http://doi.org/10.3389/fmed.2018.00346.
- Backen, A.C., Cole, C.L., Lau, S.C., Clamp, A.R., McVey, R., Gallagher, J.T. and Jayson, G.C. (2007). Heparan sulphate synthetic and editing enzymes in ovarian cancer. J. Cancer. 96. 1544-1548. DOI: https://doi.org/10.1038/sj.bjc.6603747.
- Bourgeois, C., Bour, J.B., Lidholt, K., Gauthray, C. and Pothier, P. (1998). Heparin-Like Structures on Respiratory Syncytial Virus Are Involved in Its Infectivity In Vitro. Virol. 7221-7227. DOI:http://doi.org/10.1128/JVI.72.9.7221-7227.1998.
- Clausen, T.M., Sandoval, D.R., Spliid, C.B., Pihl, J., Perrett, H.R., Painter, C., Narayanan, A., Majowicz, S.A., Kwong, E.M., McVicar, R.N., Thacker, B.E., Glass,C.A., Yang, Z., Torres, J.L., Golden, G.J., Bartels, P.L., Porell, R.N., Garretson, A.F., Laubach, L., Feldman, J., Yin, X., Pu, Y., Hauser, B. M., Caradonna, T.M., Kellman, B.P., Martino, C., Gordts, P.L.S.M., Chanda, S.K., Schmidt, A.G., Godula, K., Leibel, S.L., Jose, J., Corbett, K.D., Ward, A.B., Carlin, A.F. and Esko, J.D. (2020). SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell. 183, 1–15. DOI: https://doi.org/10.1016/j.cell.2020.09.033.
- Ernst, S., Langer, R., Cooney, C.L., and Sasisekharan, R. (1995). Enzymatic degradation of glycosaminoglycans. Rev. Biochem. Mol. Biol. 30(5), 387-444. DOI: https://doi-org.proxy.library.upei.ca/10.3109/10409239509083490.
- Huang, K. and Park, S. (2021). Heparan Sulfated Glypican-4 is Released from Astrocytes Predominantly by Proteolytic Shedding. BioRxiv. 1-29. DOI:https://doi.org/10.1101/2021.02.17.431702.
- IBEX Hep II data sheet. Revised May 2019, R. 06.
- IBEX Hep II Lyophile data sheet. May 2019 R. 01.
- Ji, Y., Wang, Y., Zeng, W., Mei, X., Du, S., Yan, Y., Hao, J. Zhang, Z., Lu, Y., Zhang, C., Ge, J. and Xing, X-H. (2020). A Heparin Derivatives Library Constructed by Chemical Modification and Enzymatic Depolymerization for Exploitation of Non-Anticoagulant Functions. Carb. Polym. 249. 116824. 1-12. DOI: https://doi.org/10.1016/j.carbpol.2020.116824.
- Moffat, C. F., M. W. McLean, W. F. Long, and F. B. Williamson. Heparinase II from Flavobacterium heparinum. HPLC analysis of the saccharides generated from chemically modified heparins. Eur. J. Biochem. 202:531–541. DOI: http://doi.org/10.1111/j.1432-1033.1991.tb16405.x.
- Mourier, P., Anger, P., Martinez, C., Herman, F. and Viskov, C. (2015). Quantitative Compositional Analysis of Heparin using Exhaustive Heparinase Digestion and Strong Anion Exchange Chromatography. Chem. Res. 46-53. http://dx.doi.org/10.1016/j.ancr.2014.12.001.
- Rhomberg, J., Shriver, Z., Beimann, K. and Sasisekharan, R. (1998). Mass Spectrometric Evidence for the Enzymatic Mechanism of the Depolymerization of Heparin-like Glycosaminoglycans by Heparinase II. Natl. Acad. Sci., USA. Biochem. 95. 12232-12237. DOI: https://doi.org/10.1073/pnas.95.21.12232.
- Rozenberg, G.I., Espada, J., de Cidre, L.L., Eijan, A.M., Calvo, J.C. and Bertolesi, G.E. (2001). Heparan sulfate, heparin, and heparinase activity detection on polyacrylamide gel electrophoresis using the fluorochrome tris(2,2′‐bipyridine) ruthenium (II). Electrophoresis. 22-3-11. DOI: http://doi.org/10.1002/1522-2683(200101)22:1<3::AID-ELPS3>3.0.CO;2-G.
- Shaya, D., Tocilj, A., Li, Y., Myette, J., Venkataraman, G., Sasisekharan, R. and Cygler, M. (2006). Crystal Structure of Heparinase II from Pedobacter heparinus and its Complex with a Disaccharide Product. Biol. Chem. 281(22).15525-15535. DOI: http://doi.org/10.1074/jbc.M512055200.
- Taylor, A.C. (1997). Titration of heparinase for removal of the PCR-inhibitory effect of heparin in DNA samples. Mol. Ecol. 6: 383-385. DOI: https://doi.org/10.1046/j.1365-294X.1997.00191.x.
- Wang, Z., Yang, B., Zhang, Z., Ly, M., Takieddin, M., Mousa, S., Liu, J., Dordick, J.S. and Linhardt, R.J. (2012). Control of the heparosan N-deacetylation leads to an improved bioengineered heparin. Appl. Microbiol. Biotechnol. 91(1): 91-99. DOI: http://doi.org/10.1007/s00253-011-3231-5.
- Wei, Z., Lyon, M. and Gallagher, J.T. (2005). Distinct Substrate Specificities of Bacterial Heparinases against N-Unsubstituted Glucosamine Residues in Heparan Sulfate. Biol. Chem. 280 (16). 15742-15748. DOI: http://doi.org/10.1074/jbc.M501102200.
- Wu, J., Zhang, C., Mei, X., Li, Y. and Xing, X-H. (2014). Controllable production of low molecular weight heparins by combinations of heparinase I/II/III. Carb. Polym. 101. 484-492. DOI: http://dx.doi.org/10.1016/j.carbpol.2013.09.052.
- Yamada, S., Murakami, T., Tsuda, H., Yoshida, K. and Sugahara, K. (1995). Isolation of The Porcine Heparin Tetrasaccharides with Glucuronate 2-O-Sulfate. Heparinase Cleaves Glucuronate 2-O-Sulfate-Containing Disaccharides in Highly Sulfated Blocks in Heparin. Bol. Chem. 270(15). 8696-8705. DOI: https://doi.org/10.1016/S0021-9258(17)49632-3.