Heparinase III References

References for Heparinase III:

  1. Aich, U., Shriver, Z., Tharakaraman, K., Raman, R. and Sasisekharan, R. (2011). Competitive Inhibition of Heparinase I by Persulfonated Glycosaminoglycans: A tool to detect Heparin contamination. Chem. 83(20): 7815-7822. DOI: http://doi.org/10.1021/ac201498a.
  2. Anger, P., Martinez, C., Mourier, P. and Viskov, C. (2018). Oligosaccharide Chromatographic Techniques for Quantification of Structural Process-Related Impurities in Heparin Resulting From 2-O Desulfation. In. Med. 5(346): 1-11. DOI: http://doi.org/10.3389/fmed.2018.00346.
  3. Bourgeois, C., Bour, J.B., Lidholt, K., Gauthray, C. and Pothier, P. (1998). Heparin-Like Structures on Respiratory Syncytial Virus Are Involved in Its Infectivity In Vitro. Virol. 7221-7227. DOI:http://doi.org/10.1128/JVI.72.9.7221-7227.1998.
  4. Clausen, T.M., Sandoval, D.R., Spliid, C.B., Pihl, J., Perrett, H.R., Painter, C., Narayanan, A., Majowicz, S.A., Kwong, E.M., McVicar, R.N., Thacker, B.E., Glass,C.A.,  Yang, Z., Torres, J.L.,  Golden, G.J., Bartels, P.L., Porell, R.N., Garretson, A.F., Laubach, L., Feldman, J., Yin, X., Pu, Y., Hauser, B. M., Caradonna, T.M., Kellman, B.P., Martino, C., Gordts, P.L.S.M., Chanda, S.K., Schmidt, A.G., Godula, K., Leibel, S.L., Jose, J., Corbett, K.D., Ward, A.B., Carlin, A.F. and Esko, J.D. (2020). SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell. 183, 1–15. DOI: https://doi.org/10.1016/j.cell.2020.09.033.
  5. Ernst, S., Langer, R., Cooney, C.L., and Sasisekharan, R. (1995). Enzymatic degradation of glycosaminoglycans. Rev. Biochem. Mol. Biol. 30(5), 387-444. DOI: https://doi-org.proxy.library.upei.ca/10.3109/10409239509083490.
  6. Gao, L., and Lipowsky, H.H. (2010). Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes. Microvasc. Res. 80(3): 394-401. DOI: http://doi.org/1016/j.mvr.2010.06.005.
  7. Godavarti, R. and Sasisekharan, R. (1996). A Comparative Analysis of the Primary Sequences and Characteristics of Heparinases I, II, and III from Flavobacterium heparinum. Biochem. Biophy. Res. Comm. 229(3). 770-777. DOI: https://doi.org/10.1006/bbrc.1996.1879.
  8. Huang, K. and Park, S. (2021). Heparan Sulfated Glypican-4 is Released from Astrocytes Predominantly by Proteolytic Shedding. BioRxiv. 1-29. DOI:https://doi.org/10.1101/2021.02.17.431702.
  9. IBEX Hep III data sheet. Revised May 2016, R. 04.
  10. IBEX Hep III Lyophile data sheet. Aug 08, 2018.
  11. Ji, Y., Wang, Y., Zeng, W., Mei, X., Du, S., Yan, Y., Hao, J. Zhang, Z., Lu, Y., Zhang, C., Ge, J. and Xing, X-H. (2020). A Heparin Derivatives Library Constructed by Chemical Modification and Enzymatic Depolymerization for Exploitation of Non-Anticoagulant Functions. Carb. Polym. 249. 116824. 1-12. DOI: https://doi.org/10.1016/j.carbpol.2020.116824.
  12. Kalia, , Chandra, V., Rahman, S.A., Sehgal, D. and Jameel, S. (2009). Heparan Sulfate Proteoglycans are Required for Cellular Binding of the Hepatitis E Virus ORF2 Capsid Protein and for Viral Infection. J. Virol. 83(24). 12714-12724. DOI: http://doi.org/10.1128/JVI.00717-09.
  13. Mourier, P., Anger, P., Martinez, C., Herman, F. and Viskov, C. (2015). Quantitative Compositional Analysis of Heparin using Exhaustive Heparinase Digestion and Strong Anion Exchange Chromatography. Chem. Res. 46-53. DOI: http://dx.doi.org/10.1016/j.ancr.2014.12.001
  14. Robinson, C.J., Mulloy, B., Gallagher, J.T. and Stringer, S.E. (2006). VEGF165-binding Sites within Heparan Sulfate Encompass Two Highly Sulfated Domains and Can Be Liberated by K5 Lyase. Biol. Chem. 281(3): 1731-1740, DOI: http://doi.org/10.1074/jbc.M510760200.
  15. Rozenberg, G.I., Espada, J., de Cidre, L.L., Eijan, A.M., Calvo, J.C. and Bertolesi, G.E. (2001). Heparan sulfate, heparin, and heparinase activity detection on polyacrylamide gel electrophoresis using the fluorochrome tris(2,2′‐bipyridine) ruthenium (II). Electrophoresis. 22-3-11. DOI: http://doi.org/10.1002/1522-2683(200101)22:1<3::AID-ELPS3>3.0.CO;2-G
  16. Sasisekharan, R., Moses, M.A., Nugent, M.A., Cooney, C.L. and Langer, R. (1994). Heparinase inhibits neovascularization. Proc. Natl. Acad. Sci. USA. Biol. 91. 1524-1528. DOI: https://doi.org/10.1073/pnas.91.4.1524.
  17. Skutelsky, E., Shoichetman, T. and Hammel, I. (1995). An histochemical approach to characterization of anionic constituents in mast cell secretory granules. Histochem Cell Biol. 104. 453-458. DOI: https://doi.org/10.1007/BF01464335
  18. Wei, Z., Lyon, M. and Gallagher, J.T. (2005). Distinct Substrate Specificities of Bacterial Heparinases against N-Unsubstituted Glucosamine Residues in Heparan Sulfate. Biol. Chem. 280 (16). 15742-15748. DOI: http://doi.org/10.1074/jbc.M501102200.
  19. Wu, J., Zhang, C., Mei, X., Li, Y. and Xing, X-H. (2014). Controllable production of low molecular weight heparins by combinations of heparinase I/II/III. Carb. Polym. 101. 484-492. DOI: http://dx.doi.org/10.1016/j.carbpol.2013.09.052.

To request a quote, click the button below: